Identifying active surface phases for metal oxide electrocatalysts: a study of manganese oxide bi-functional catalysts for oxygen reduction and water oxidation catalysis.

نویسندگان

  • Hai-Yan Su
  • Yelena Gorlin
  • Isabela C Man
  • Federico Calle-Vallejo
  • Jens K Nørskov
  • Thomas F Jaramillo
  • Jan Rossmeisl
چکیده

Progress in the field of electrocatalysis is often hampered by the difficulty in identifying the active site on an electrode surface. Herein we combine theoretical analysis and electrochemical methods to identify the active surfaces in a manganese oxide bi-functional catalyst for the oxygen reduction reaction (ORR) and the oxygen evolution reaction (OER). First, we electrochemically characterize the nanostructured α-Mn(2)O(3) and find that it undergoes oxidation in two potential regions: initially, between 0.5 V and 0.8 V, a potential region relevant to the ORR and, subsequently, between 0.8 V and 1.0 V, a potential region between the ORR and the OER relevant conditions. Next, we perform density function theory (DFT) calculations to understand the changes in the MnO(x) surface as a function of potential and to elucidate reaction mechanisms that lead to high activities observed in the experiments. Using DFT, we construct surface Pourbaix and free energy diagrams of three different MnO(x) surfaces and identify 1/2 ML HO* covered Mn(2)O(3) and O* covered MnO(2), as the active surfaces for the ORR and the OER, respectively. Additionally, we find that the ORR occurs through an associative mechanism and that its overpotential is highly dependent on the stabilization of intermediates through hydrogen bonds with water molecules. We also determine that OER occurs through direct recombination mechanism and that its major source of overpotential is the scaling relationship between HOO* and HO* surface intermediates. Using a previously developed Sabatier model we show that the theoretical predictions of catalytic activities match the experimentally determined onset potentials for the ORR and the OER, both qualitatively and quantitatively. Consequently, the combination of first-principles theoretical analysis and experimental methods offers an understanding of manganese oxide oxygen electrocatalysis at the atomic level, achieving fundamental insight that can potentially be used to design and develop improved electrocatalysts for the ORR and the OER and other important reactions of technological interest.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Metal Oxide/Pt Based Nanocomposites as Electrocatalysts for Oxygen Reduction Reaction

Fuel cell is a promising choice for clean energy because of its eco-friendly system, high energy conversion efficiency and high power density. Recently, much of the research work is focused on the system of combining metal oxides to increase the durability and surface area and to reduce the cost. In this study, among the various fabrication methods, we used the precipitation method to synthesis...

متن کامل

Molecular Mixed-Metal Manganese Oxido Cubanes as Precursors to Heterogeneous Oxygen Evolution Catalysts.

Well-defined mixed-metal [CoMn3 O4 ] and [NiMn3 O4 ] cubane complexes were synthesized and used as precursors for heterogeneous oxygen evolution reaction (OER) electrocatalysts. The discrete clusters were dropcasted onto glassy carbon (GC) and indium tin oxide (ITO) electrodes, and the OER activities of the resulting films were evaluated. The catalytic surfaces were analyzed by various techniqu...

متن کامل

Noble Metal Aerogels—Synthesis, Characterization, and Application as Electrocatalysts

CONSPECTUS: Metallic and catalytically active materials with high surface area and large porosity are a long-desired goal in both industry and academia. In this Account, we summarize the strategies for making a variety of self-supported noble metal aerogels consisting of extended metal backbone nanonetworks. We discuss their outstanding physical and chemical properties, including their three-di...

متن کامل

Introducing Pt/ZnO as a new non carbon substrate electro catalyst for oxygen reduction reaction at low temperature acidic fuel cells

Gas diffusion electrode was used for providing better conditions in fuel cell systems for oxygen reduction reaction (ORR). Because the slow kinetics of the oxygen reduction reaction at the proton exchange membrane fuel cell cathode restricts fuel cell efficiency. To this end, researchers have used platinum-coated carbon. In the present study, due to the reduction of carbon corrosion, Zinc oxide...

متن کامل

Understanding Interactions between Manganese Oxide and Gold That Lead to Enhanced Activity for Electrocatalytic Water Oxidation

To develop active nonprecious metal-based electrocatalysts for the oxygen evolution reaction (OER), a limiting reaction in several emerging renewable energy technologies, a deeper understanding of the activity of the first row transition metal oxides is needed. Previous studies of these catalysts have reported conflicting results on the influence of noble metal supports on the OER activity of t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Physical chemistry chemical physics : PCCP

دوره 14 40  شماره 

صفحات  -

تاریخ انتشار 2012